1
2
3
用 Invariance of Domain 证明 Invariance of Dimension: Elementary proof of topological invariance of dimension using Brouwer’s fixed point and invariance of domain theorems?
(提问者的动机是 这篇文章用初等方法证明了 Brouwer 不动点定理,也先挖个坑)
(Invariance of Dimension) 若$m\ne n$,则$\mathbb{R}^m\not\cong\mathbb{R}^n$.
证明:设$m\leqslant n$,设$\mathbb{R}^m$的开子集$V$同胚于$\mathbb{R}^n$的开子集$U$,则设$f:U\rightarrow V$为同胚.复合上包含映射$i:\mathbb{R}^m\hookrightarrow\mathbb{R}^n$可得单射$i\circ f:U\rightarrow\mathbb{R}^n$,像在$\mathbb{R}^n$的子空间$\mathbb{R}^m$中.由Invariance of Domain,可得$i\circ f(U)$在$\mathbb{R}^n$中是开的.
若$m<n$,则像不会是开的(超平面中一点的任意邻域必包含不在超平面中的点),因此$m=n$.
注:上面的Invariance of Domain用的等价描述:设$U$是$\mathbb{R}$的开子集,设$f:U\rightarrow\mathbb{R}^n$是连续的单射,则$f(U)$也是$\mathbb{R}^n$的开子集.
参考:
Brouwer’s fixed point and invariance of domain theorems, and Hilbert’s fifth problem - Terence Tao
Elementary proof that ℝ𝑛 is not homeomorphic to ℝ𝑚
Another (non-homological) proof of the invariance of dimension
4
单值化定理的证明(?)
5
待整理