一个关于映射度的问题
如下题目是某年丘赛的几何与拓扑赛道的一题: Let $S^n$ be the unit sphere in $\mathbb{R}^{n+1}$ and $f:S^n\rightarrow S^n$ a continuous map. Assume that the degree of $f$ is an odd integer. Show that there exists $x_0$ such that $f(-x_0)=-f(x_0)$. 网上某解答如下: Otherwise $F(t,x)=\frac{f(x)+tf(-x)}{|f(x)+tf(-x)|}$ gives the homotopy between $f(x)$ and $g=\frac{f(x)+f(-x)}{|f(x)+f(-x)|}$, ...