$$\sum_{n=0}^{\infty} p(5 n+4) x^{n}=5\left(\prod_{k=1}^{\infty}\left(1-x^{5 k}\right)^{5} / \prod_{k=1}^{\infty}\left(1-x^{k}\right)^{6}\right)$$
$$\frac{\pi^{2}}{6}-\sum_{k=1}^{N-1} \frac{1}{k^{2}} \sim \frac{1}{2 N^{2}}+\sum_{m=0}^{\infty} \frac{B_{2 m}}{N^{2 m+1}}$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include<stdio.h>
#define __(a) goto a;
#define ___(a) putchar(a);
#define _(a,b) ___(a) __(b);
void main()
{ _:__(t)a:_('r',g)b:_('$',p)
c:_('l',f)d:_(' ',s)e:_('a',s)
f:_('o',q)g:_('l',h)h:_('d',n)
i:_('e',w)j:_('e',x)k:_('\n',z)
l:_('H',l)m:_('X',i)n:_('!',k)
o:_('z',q)p:_('q',b)q:_(',',d)
r:_('i',l)s:_('w',v)t:_('H',j)
u:_('a',a)v:_('o',a)w:_(')',k)
x:_('l',c)y:_('\t',g)z:___(0x0)}